Accuracy and Precision of Partial-Volume Correction in Oncological PET/CT Studies.

نویسندگان

  • Matthijs C F Cysouw
  • Gerbrand Maria Kramer
  • Otto S Hoekstra
  • Virginie Frings
  • Adrianus Johannes de Langen
  • Egbert F Smit
  • Alfons J M van den Eertwegh
  • Daniela E Oprea-Lager
  • Ronald Boellaard
چکیده

Accurate quantification of tracer uptake in small tumors using PET is hampered by the partial-volume effect as well as by the method of volume-of-interest (VOI) delineation. This study aimed to investigate the effect of partial-volume correction (PVC) combined with several VOI methods on the accuracy and precision of quantitative PET. METHODS Four image-based PVC methods and resolution modeling (applied as PVC) were used in combination with several common VOI methods. Performance was evaluated using simulations, phantom experiments, and clinical repeatability studies. Simulations were based on a whole-body 18F-FDG PET scan in which differently sized spheres were placed in lung and mediastinum. A National Electrical Manufacturers Association NU2 quality phantom was used for the experiments. Repeatability data consisted of an 18F-FDG PET/CT study on 11 patients with advanced non-small cell lung cancer and an 18F-fluoromethylcholine PET/CT study on 12 patients with metastatic prostate cancer. RESULTS Phantom data demonstrated that most PVC methods were strongly affected by the applied resolution kernel, with accuracy differing by about 20%-50% between full-width-at-half-maximum settings of 5.0 and 7.5 mm. For all PVC methods, large differences in accuracy were seen among all VOI methods. Additionally, the image-based PVC methods were observed to have variable sensitivity to the accuracy of the VOI methods. For most PVC methods, accuracy was strongly affected by more than a 2.5-mm misalignment of true (simulated) VOI. When the optimal VOI method for each PVC method was used, high accuracy could be achieved. For example, resolution modeling for mediastinal lesions and iterative deconvolution for lung lesions were 99% ± 1.5% and 99% ± 0.9% accurate, respectively, for spheres 15-40 mm in diameter. Precision worsened slightly for resolution modeling and to a larger extent for some image-based PVC methods. Uncertainties in delineation propagated into uncertainties in PVC performance, as confirmed by the clinical data. CONCLUSION The accuracy and precision of the tested PVC methods depended strongly on VOI method, resolution settings, contrast, and spatial alignment of the VOI. PVC has the potential to substantially improve the accuracy of tracer uptake assessment, provided that robust and accurate VOI methods become available. Commonly used delineation methods may not be adequate for this purpose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of scatter coincidences, partial volume, positron range and non-colinearity on the quantification of FDOPA Patlak analysis

Introduction: The key characteristics of positron emission tomography (PET) are its quantitative capability and its sensitivity, which allow the in vivo imaging of biochemical interactions with small amounts of tracer concentrations. Therefore, accurate quantification is important. However, it can be sensitive to several physical factors. The aim of this investigation is the assessment of the e...

متن کامل

A Partial Volume Effect Correction Tailored for 18F-FDG-PET Oncological Studies

We have developed, optimized, and validated a method for partial volume effect (PVE) correction of oncological lesions in positron emission tomography (PET) clinical studies, based on recovery coefficients (RC) and on PET measurements of lesion-to-background ratio (L/B m) and of lesion metabolic volume. An operator-independent technique, based on an optimised threshold of the maximum lesion upt...

متن کامل

Impact of PET - CT motion correction in minimising the gross tumour volume in non-small cell lung cancer

AbstractObjective: To investigate the impact of respiratory motion on localization, and quantification lung lesions for the Gross Tumour Volume utilizing an in-house developed Auto3Dreg programme and dynamic NURBS-based cardiac-torso digitised phantom (NCAT). Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumour lesions. The m...

متن کامل

FDG-PET/MRI fused data sets for the detection of liver metastases in patients undergoing systemic anticancer treatment

Background: To retrospectively describe imaging characteristics of liver metastases on fused FDG-PET/ MRI data sets and to compare the diagnostic accuracy of MRI and fused FDG-PET/MRI data sets for the detection of liver metastases in patients undergoing systemic anticancer treatment. Materials and Methods: 43 oncological patients (mean age: 56+/- 11 years) were investigated by FDG-PET...

متن کامل

Evaluation of methods of co-segmentation on PET/CT images of lung tumor: simulation study

Introduction: Lung cancer is one of the most common causes of cancer-related deaths worldwide. Nowadays PET/CT plays an essential role in radiotherapy planning specially for lung tumors as it provides anatomical and functional information simultaneously that is effective in accurate tumor delineation. The optimal segmentation method has not been introduced yet, however several ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 57 10  شماره 

صفحات  -

تاریخ انتشار 2016